david wong

Hey! I'm David, cofounder of zkSecurity and the author of the Real-World Cryptography book. I was previously a crypto architect at O(1) Labs (working on the Mina cryptocurrency), before that I was the security lead for Diem (formerly Libra) at Novi (Facebook), and a security consultant for the Cryptography Services of NCC Group. This is my blog about cryptography and security and other related topics that I find interesting.

How not to mess with implementing a stateful signature scheme posted December 2015

The Mcgrew draft (on the old stateful signature scheme LMS) has a section on "how not to mess with implementing a stateful scheme". It's pretty scary.

The LMS signature system, like all N-time signature systems, requires that the signer maintain state across different invocations of the signing algorithm, to ensure that none of the component one-time signature systems are used more than once. This section calls out some important practical considerations around this statefulness.

In a typical computing environment, a private key will be stored in non-volatile media such as on a hard drive. Before it is used to sign a message, it will be read into an application's Random Access Memory (RAM). After a signature is generated, the value of the private key will need to be updated by writing the new value of the private key into non-volatile storage. It is essential for security that the application ensure that this value is actually written into that storage, yet there may be one or more memory caches between it and the application. Memory caching is commonly done in the file system, and in a physical memory unit on the hard disk that is dedicated to that purpose. To ensure that the updated value is written to physical media, the application may need to take several special steps. In a POSIX environment, for instance,the O_SYNC flag (for the open() system call) will cause invocations of the write() system call to block the calling process until the data has been to the underlying hardware. However, if that hardware has its own memory cache, it must be separately dealt with using an operating system or device specific tool such as hdparm to flush the on-drive cache, or turn off write caching for that drive. Because these details vary across different operating systems and devices, this note does not attempt to provide complete guidance; instead, we call the implementer's attention to these issues.

When hierarchical signatures are used, an easy way to minimize the private key synchronization issues is to have the private key for the second level resident in RAM only, and never write that value into non-volatile memory. A new second level public/private key pair will be generated whenever the application (re)starts; thus, failures such as a power outage or application crash are automatically accommodated. Implementations SHOULD use this approach wherever possible.

Well done! You've reached the end of my post. Now you can leave a comment or read something else.

Comments

Simz

Could you explain more on private key will be stored in non-volatile media ??? Give a link to an example in C language ????
Thanks

leave a comment...