David Wong

cryptologie.net

cryptography, security, and random thoughts

Hey! I'm David, cofounder of zkSecurity, research advisor at Archetype, and author of the Real-World Cryptography book. I was previously a cryptography architect of Mina at O(1) Labs, the security lead for Libra/Diem at Facebook, and a security engineer at the Cryptography Services of NCC Group. Welcome to my blog about cryptography, security, and other related topics.

← back to all posts

Implementation of Boneh and Durfee attack on RSA's low private exponents

blog

I’ve Implemented a Coppersmith-type attack (using LLL reductions of lattice basis). It was done by Boneh and Durfee and later simplified by Herrmann and May. The program can be found on my github.

The attack allows us to break RSA and the private exponent d. Here’s why RSA works (where e is the public exponent, phi is euler’s totient function, N is the public modulus):

ed=1(modφ(N)) ed=k·φ(N)+1 over  k·φ(N)+1=0(mode) k·(N+1pq)+1=0(mode) 2k·(N+12+pq2)+1=0(mode)

The last equation gives us a bivariate polynomial \( f(x,y) = 1 + x \cdot (A + y) \). Finding the roots of this polynomial will allow us to easily compute the private exponent d.

The attack works if the private exponent d is too small compared to the modulus: \( d < N^{0.292} \).

To use it:

  • look at the tests in boneh_durfee.sage and make your own with your own values for the public exponent e and the public modulus N.
  • guess how small the private exponent d is and modify delta so you have d < N^delta
  • tweak m and t until you find something. You can use Herrmann and May optimized t = tau * m with tau = 1-2*delta. Keep in mind that the bigger they are, the better it is, but the longer it will take. Also we must have 1 <= t <= m.
  • you can also decrease X as it might be too high compared to the root of x you are trying to find. This is a last recourse tweak though.

Here is the tweakable part in the code:

# Tweak values here !
delta = 0.26 # so that d < N^delta
m = 3        # x-shifts
t = 1        # y-shifts # we must have 1 <= t <= m
← back to all posts blog • 2015-03-11
currently reading:
Implementation of Boneh and Durfee attack on RSA's low private exponents
03-11 blog
📖 my book
Real-World Cryptography is available from Manning Publications.
A practical guide to applied cryptography for developers and security professionals.
🎙️ my podcast
Two And A Half Coins on Spotify.
Discussing cryptocurrencies, databases, banking, and distributed systems.
📺 my youtube
Cryptography videos on YouTube.
Video explanations of cryptographic concepts and security topics.