David Wong

cryptologie.net

cryptography, security, and random thoughts

Hey! I'm David, cofounder of zkSecurity, research advisor at Archetype, and author of the Real-World Cryptography book. I was previously a cryptography architect of Mina at O(1) Labs, the security lead for Libra/Diem at Facebook, and a security engineer at the Cryptography Services of NCC Group. Welcome to my blog about cryptography, security, and other related topics.

← back to all posts

Pollard's p-1 factorization algorithm

blog

Got my graphic tablet back, needed to do a small video to get back into it so I made something on Pollard’s p-1 factorization algorithm:

You can find the records on factoring with p-1 on loria.fr, the biggest prime factor found was of 66 digits (~220bits) using B1=10^8 and B2=10^10. But people have been using bigger parameters like B1=10^10 and B2=10^15. It doesn’t really make sense to continue using p-1 after that, and more efficient algorithms that still have a complexity tied to the size of the smallest factor exist. The Elliptic Curve Method (Or Lenzstra factorization method) is one of them, and is carrying the same ideas as p-1 in the elliptic curves.

In the video I also don’t talk about B2. This is if you have a factorization of p-1 that is B1-powersmooth, except for a large single prime. You can just set a B2 which would be larger than this last factor and try every factor between B1 and B2. There are some optimizations that exist to do that faster instead of doing it naively but this is it.

← back to all posts blog • 2016-03-17
currently reading:
Pollard's p-1 factorization algorithm
03-17 blog
📖 my book
Real-World Cryptography is available from Manning Publications.
A practical guide to applied cryptography for developers and security professionals.
🎙️ my podcast
Two And A Half Coins on Spotify.
Discussing cryptocurrencies, databases, banking, and distributed systems.
📺 my youtube
Cryptography videos on YouTube.
Video explanations of cryptographic concepts and security topics.