david wong

Hey! I'm David, the author of the Real-World Cryptography book. I'm a crypto engineer at O(1) Labs on the Mina cryptocurrency, previously I was the security lead for Diem (formerly Libra) at Novi (Facebook), and a security consultant for the Cryptography Services of NCC Group. This is my blog about cryptography and security and other related topics that I find interesting.

Quick access to articles on this page:

more on the next page...

Schnorr's Signature and non-interactive Protocols posted December 2014

Interactive Protocols

Interactive Protocols are basically a discussion between a Prover and a Verifier where the Prover has some piece of information he wants to prove, without giving out the information.

It is often illustrated with Peggy and Victor and their super tunnel.

peggy

Usualy it takes 3 steps:

  1. Prover sends a fixed value.
  2. Verifier sends a challenge.
  3. Prover answers the challenge.

The Verifier can then verify the answer based on the fixed value. If the answer is correct, the Verifier can assume the Prover knows what he's trying to prove. Sometimes you have to repeat the protocols multiple time to be sure, and not all problems have an Interactive Proof.

Classic examples of such proofs can be found on the Discrete Logarithm problem (we'll talk about that later) and the Hamiltonian Cycle problem.

Interactive Protocols are verified if they are :

  1. Complete: a Prover can successfully answer the challenge if he is honest.
  2. Sound : a dishonest Prover cannot convince the Verifier he knows the secret.

In the real definitions we use probabilities (an honest prover still has a small chance of making a mistake, a dishonest prover still has a small chance of convincing the Verifier).

We also often want a 3rd condition on our Interactive Protocols: we want it to be Zero-knowledge, no information about our secret should be leaked in this interaction.

Here are how you prove each one of them:

  1. Completeness: Can the Prover answer correctly thanks to his secret?
  2. Soundness: From the point of view of the Verifier. If the Prover can correctly answer two different challenges for the same fixed value (however he crafted the answers and the fixed value), does it mean that he must know the secret then?
  3. Zero-Knowledgeness: If you see a transcript of a recorded instance of this interaction, will you learn anything about the secret? (See if you can create fake transcripts)

There are also notions of weak Zero-knowledge, strong Zero-knowledge, dishonnest verifiers, etc...

But let's talk about something else.

Non-interactive Protocols

Since we said that a recorded transcript of a past interaction has no value (if it is zero-knowledge), then we could assume that there is no way of proving something by showing an old transcript, or by showing a transcript with yourself.

Don't fool yourself! Yes we can. We do this by using hash functions that we deem random enough.

The idea is that, by replacing the Verifier by a random oracle, we cannot predict the challenges and we thus cannot craft a fake transcript (we like to use random oracles instead of hashes, to prove some scheme is secure).

a random oracle is an oracle (a theoretical black box) that responds to every unique query with a (truly) random response chosen uniformly from its output domain. If a query is repeated it responds the same way every time that query is submitted.

What is interesting is that this protocol was used in a Signature Scheme.

Interactive Proof of a Discrete Logarithm

The most famous academic example of Interactive Protocol is done using the Discrete Logarithm problem.

we have <g> = G, with g of order q. The Prover wants to show he knows x in g^x = y.

  1. the Prover sends t = g^e
  2. the Verifier sends a challenge c
  3. the Prover sends d = e + cx

The Verifier can then compute y^c * t = g^(e + cx) and see if it equals g^d = g^(e + cx)

A transcript would look like this: (t, c, d)

Non-Interactive Proof of a Discrete Logarithm

Doing this with a non-interactive protocol, it would look like this:

(t, h(t), d) with h a hash function.

Schnorr's Signature

This is what Schnorr's Signature is doing:

  1. t = g^e
  2. c = H(m || t)
  3. d = e - x*c

he would then send (c, d) as the signature, along the message m. Which is basically a hash of the message with a proof that he knows the secret x.

To verify the signature you would use the public key y = g^x to compute y^c * g^d = t and then you would compute the hash. It would give you the proof that the signer knows x (authentication, non-repudiation) and that the message hasn't been tampered (integrity).

So this is one way of using Non-interactive proofs!

2 comments

FAQ on Whitebox Cryptography posted December 2014

A great FAQ, written by Marc Joye (Thomson R&D), on Whitebox Cryptography.

http://joye.site88.net/papers/Joy08whitebox.pdf

Thansk Tancrède for the link!

Q1: What is white-box cryptography?
A major issue when dealing with security programs is the protection of "sensitive" (secret, confidential or private) data embedded in the code. The usual solution consists in encrypting the data but the legitimate user needs to get access to the decryption key, which also needs to be protected. This is even more challenging in a software-only solution, running on a non-trusted host.
White-box cryptography is aimed at protecting secret keys from being disclosed in a software implementation. In such a context, it is assumed that the attacker (usually a "legitimate" user or malicious software) may also control the execution environment. This is in contrast with the more traditional security model where the attacker is only given a black-box access (i.e., inputs/outputs) to the cryptographic algorithm under consideration.

Q2: What is the difference with code obfuscation?
Related and complementary techniques for protecting software implementations but with different security goals include code obfuscation and software tamper-resistance. Code obfuscation is aimed at protecting against the reverse engineering of a (cryptographic) algorithm while software tamper-resistance is aimed at protecting against modifications of the code.
All these techniques have however in common that the resulting implementation must remain directly executable.

Or as Francis Gabriel writes here

Code obfuscation means code protection. A piece of code which is obfuscated is modified in order to be harder to understand. As example, it is often used in DRM (Digital Rights Management) software to protect multimedia content by hiding secrets informations like algorithms and encryption keys.

comment on this story

Sécuday @ Lille on January 16th posted December 2014

secuday

SECURITY DAY will take place at the University of Lille 1, in France, on January 16th. People from Quarkslab (where I almost did my internship), ANSSI, Microsoft, ... will give talks. There is even one of my classmate Jonathan Salwan.

I'm trying to find a way to get there, so if you want to buy me a beer this might be the right place :D

comment on this story

OneRNG posted December 2014

I like how people make an extreme effort to create "sure" source of random numbers.

OneRNG has released a new usb source. Everything is opensource (open hardware, open software), you can even create your own by following instructions on their websites.

OneRNG collects entropy from an avalanche diode circuit, and from a channel-hopping RF receiver. It even has a “tinfoil hat” to prevent RF interference — you can remove the hat in order to visually verify the components being used.

Now I'm wondering who is using that and for what

comment on this story

Git client vulnerability posted December 2014

A new vulnerability has been discovered on the git client. See Github's announcement

Repositories hosted on github.com cannot contain any of the malicious trees that trigger the vulnerability because we now verify and block these trees on push.

The official announcement and the updated and fixed version of git is here.

We used to allow committing a path ".Git/config" with Git that is running on a case sensitive filesystem, but an attempt to check out such a path with Git that runs on a case insensitive filesystem would have clobbered ".git/config", which is definitely not what the user would have expected. Git now prevents you from tracking a path with ".Git" (in any case combination) as a path component.

More information about the vulnerability here

Git maintains various meta-information for its repository in files in .git/ directory located at the root of the working tree. The system does not allow a file in that directory (e.g. .git/config) to be committed in the history of the project, or checked out to the working tree from the project. Otherwise, an unsuspecting user can run git pull from an innocuous-looking-but-malicious repository and have the meta-information in her repository overwritten, or executable hooks installed by the owner of that repository she pulled from (i.e. an attacker).

comment on this story

Last exam of my life posted December 2014

And I just passed the last exam of this semester, which should be the last exam of my life =) Now is time to take a few days to relax and eat nice food because it will soon be christmas ^^ (or holidays, as I heard some american say to avoid saying christmas).

A few interesting things I had to do during my exams these last few days:

  • Simple Power Analysis (SPA). Guess what algorithm is used from smartcards' traces and calculate the exponent if it's a binary exponentiation

spa

In the picture you can see two patterns, "1" is represented by two operations in the algorithm, and one of them is squaring which happens also when you have a "0" in your exponent's binary representation. So following the computations revealed by the power trace you can guess the binary representation of the exponent.

I had to read this article explaining two malloc implementations and their vulnerabilities. GNU Lib C (used in Linux) and System V AT&T (used in Solaris, IRIX). I knew the double chained list system but System V uses a different approach: binary tree and also a realfree function that completes the free function.

comment on this story